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ABSTRACT: In this paper, time fractional flow of a Newtonian fluid containing dust particles through 
a uniform cylindrical tube in presence of uniform magnetic field placed along meridian axis is 
discussed. The implication of time fractional order differential equations in flow problems and 
some benefits of fractional order differential equations are highlighted. The Adomian 
Decomposition Method (ADM) is used in the process to get an approximate solution to the 
proposed problem. The difference between the effects of fractional order and integer order of the 
differential equations and also, the effects of some important parameters on the flow system are 
discussed with the help of graphs and tables. The convergence of the method is also tested. It has 
been observed that the fractional order differential equation can reveal many things like the 
increase in dust particle velocity as magnetic field increases for fractional order derivatives, 
whereas, no noticeable change in dust particle velocity with change in magnetic field for integer 
order derivatives are observed, implying that fractional order differential equations are more 
sensitive in comparison to the classical/integer order differential equations. 

Keywords: Time-fractional order Navier-Stokes equation, Adomian Decomposition Method (ADM), 
Magnetohydrodynamics (MHD). 

Abbreviations: ADM, Adomian Decomposition Method; MHD, Magnetohydrodynamics. 

I. INTRODUCTION 

In the field of biomedical sciences including blood 
flow like behaviour of blood flow in presence of 
magnetic field etc. as well as in the field of 
mechanical engineering like coolant theory etc. 
fractional Navier-Stokes equations have played a 
very important role. There are several methods to 
solve fractional Navier-Stokes equations. But out of 
all those methods, Adomian decomposition method 
(ADM) is one of the best methods. 
In this work, the famous Adomian decomposition 
method (ADM) is used to solve the proposed fractional 
differential equations. Momani and Odibat (2006) used 
ADM to obtain an analytical solution of time fractional 
Navier-Stokes equation [1]. Hashim (2006) applied the 
ADM to solve both linear and nonlinear boundary value 
problems for fourth order integro-differential equations 
[2]. Abassy (2010) introduced a refined version of ADM 
which he called it the improved ADM, he claimed that 
his improved method was better than the original ADM 
[3]. Sanchez Cano (2011) used the ADM together with 
some properties of nested integrals to obtain a solution 
to a class of non linear ordinary differential equations 
and a coupled system [4]. Hongjun et al., (2011) studied 
the mathematical model of laminar boundary layer 
problem in hydrodynamics compared to Navier-Stokes 
equation which is nothing but a second order nonlinear 
partial differential equations which is solved with 
analytical approximation by using ADM [5]. Abdelrazec 
and Pelinovsky (2011) proved the convergence of the 
ADM for an initial value problem, he checked the 
convergence rate of the ADM by applying in the 
nonlinear Schrodinger equation [6]. Duan et al., (2012) 

reviewed the ADM and its applications to fractional 
differential equations [7]. Bougoffa  used the ADM for 
solving a moving boundary problem arising from the 
diffusion of oxygen in absorbing tissue [8]. Agom and 
Badmus (2015) studied the correlation of ADM and finite 
difference methods to solve non homogeneous 
boundary value problem [9]. El-Borai et al., (2015) used 
the ADM to solve a system of fractional partial 
differential equation which has numerous applications in 
many fields of science [10]. Nhawu et al., (2016) used 
the ADM for numerical solution of first order differential 
equations [11]. Hosseini and Nasabzadeh (2016) 
studied the convergence of ADM [12]. Gonzalez-Gaxiola 
and Bernal-Jaquez (2017) used ADM to solve the 
nonlinear partial differential equation representing a 
model for tumour growth under medical treatment [13]. 
Mungkasi & Dheno (2017) used the ADM to solve the 
gravity wave equations [14]. 
Further, the flow with dust particles is one of the 
most realistic and important phenomena in any flow 
system. Rukmangadachari (1979) studied the 
unsteady laminar flow of a dusty viscous 
incompressible fluid through the annular tube 
formed by two coaxial circular cylinders [15]. Maitra 
(1997) studied the unsteady dusty fluid flow 
through a circular cylinder with time varying 
pressure gradient [16]. Attia (2011) studied the 
magnetohydrodynamics (MHD) flow of a dusty fluid 
through a circular pipe considering the Hall effect 
[17]. Gireesha et al., (2012) studied the geometry 
of the unsteady motion of a dusty fluid through 
porous media in a uniform pipe [18]. Attia et al., 
(2014) studied the unsteady 
magnetohydrodynamics (MHD) flow and heat 
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transfer of a dusty electrically conducting fluid 
between two infinite horizontal plates [19]. Kumar 
et al., (2015) studied a fractional model of Navier-
Stokes equation to study the unsteady flow of a 
viscous fluid [20]. Shah et al., (2016) discussed the 
effects of fractional order and magnetic field on the 
blood flow in cylindrical domains [21]. Hamid et al., 
(2019) also studied fractional order unsteady flow 
of nanofluids [22]. Kumar et al., (2019) discussed 
system of time fractional linear and nonlinear 
differential equations [23]. Motivated by the above 
mentioned works, this paper is focused on solving a 
fractional order differential equations arising from a fluid 
flow in uniform cylindrical tube using ADM under certain 
initio-boundary conditions. Thus, the axisymmetric 
flow of a Newtonian fluid through a uniform 
cylindrical tube in presence of magnetic field is 
being studied in this work. Also, it is considered 
that the fluid contains impurities in the form of dust 
particles. A flow model for this situation in the form 
of fractional Navier-Stokes equation is developed. 
Since it is not possible to obtain the general 
solution of Navier-Stokes equation easily, so 
certain assumptions are considered and an 
approximate solution of our fractional Navier-
Stokes equation is obtained. In doing so, Adomian 
Decomposition Method (ADM) is used, to obtain an 
approximate solution. After successfully checking 
the convergence of the solution, graphs of the 
different parameters involved are obtained and 
effects of different parameters are highlighted in a 
table. This paper aims at highlighting a more 
general case of dusty two phase fluid flow system 
as compared to that considered by Shah et al., 
(2016) [21], by considering different time fractional 
orders for fluid flow and dust particle flow equations 
separately and also by considering the volume 
fraction of the dust particles. As a result, it can be 
clearly found that the dust particle flow pattern can 
be traced easily if fractional order value is 
considered. 

A. Riemann-Liouville (R-L) Fractional Integral 
Before defining R-L fractional integral, we first give the 
following definition. 
Definition: A real function ���� , � > 0 is said to be in the 
space	
 , 
 ∈ �(set of real nos.) if there exists a real 
number 
 �> 
� such that ���� = � 
����� , where ����� ∈  	[�, ∞� and is said to be in the 

space �� � iff ���� ∈ 	
, � ∈ �(set of natural nos.). 
R-L fractional integral: The Riemann-Liouville 
fractional integral operator of order � ≥  �, of a function � ∈ 	
 , 
 ≥ −�, is defined as  

������ = ����� � �� − ��������� � ,    � > 0, ! > 0�
�  

������ = ���� 
B. Caputo Fractional Derivative 
The fractional derivative of a function "�!� in Caputo 
sense is defined as #$"�!� = %&�$#&"�!� 
           = 1Γ�) − *� � �! − +�&�$�,"�&��+�-+ .

/  

for  ) − 1 < * ≤ ), ) ∈ 2, ! > 0, " ∈ 3�,&
. 

Properties: Let 4, " ∈ 35&, 6 ≥ −1 , 7, - ∈ 8 , ) −  1 < 9 ≤  ) , ) ∈ 2, #:4�!� and #:"�!�exist, then 

1. #:;74�!� + -"�!�= = 7#:4�!� + -#:"�!� 

2. #:%:4�!� = 4�!� 

3. %:#:4�!� = 4�!� − ∑ 4�?��0� .@
?!&�,?B/   , ! > 0 

C.  Basic equations used 
The basic equations for the flow of an incompressible 
fluid in a porous cylindrical domain is given by #:CD#!: = − 1E ∇) + G∇HCD − % IID × KID1 − L& CD + M2/1 − L& ;C IIID − C&IIIID= 

     − G;1 − L&=N CD 

O #$CD&#!$ = M;CD − CD&= 

where % IID = P;QID + CD × KID= ,    % IID is current density, P is 

electrical conductivity, Q IIID is electricfield, K IIID is magnetic 
induction, CD is the fluid velocity, CD& is the dust particle 

velocity, G is kinematic coefficient of viscosity, L& is 

volume fraction of the dust particle, Eis the density of the 
fluid particle, )is the pressure, !is the time, 9and *are 
time fractional derivatives, N is the medium’s 
permeability, 2/ is the number density of dust particle, Mis the Stoke’s resistance. 

In our case, 
RRS ≡ 0 (due to axi-symmetric flow) and also 

the velocity components along radial and meridian 
direction are also taken to be zero due to axial flow 
consideration i.e. if C =  �CU , CS , CV�  then CU =  CS =  0 
and thus, we have  C =  CV�W, +, !�. 

D. Fundamental assumptions 
The following assumptions are considered in this work: 
– The fluid under consideration is an incompressible 
Newtonian fluid. 
– The flow is considered axisymmetric as well as axial 
in nature. 
– Only the time fractional derivative of Navier-Stokes 
equations is taken into consideration. 
– The magnetic field is applied along the meridian axis 
i.e. for our case K = �0, K/ , 0� where K/is the component 
of magnetic field in meridian axis, considered as 
uniform. 
– We consider the voltage difference along the rear 
ends of the tube to be very low and as a result, the 

electric field is neglected i.e. for our case QID = 0. 
E.  Analysis of ADM  
To understand ADM, let us see a general description of 
the problem as follows. First of all, let us consider a 
differential equation YZ�!�  =  "�!� 
where Y represents a general nonlinear ordinary or 
partial differential operator with both linear and nonlinear 
terms. The linear term is decomposed into [ + 8, where [ is invertible and 8 is the remainder of the linear 
operator. Also, we may take [ as the highest order 
derivative so as to avoid difficult integrations involving 
complicated Green’s functions. Thus, the equation may 
be written as [Z +  8Z +  2Z =  "                                                                (1) 
where 2Z represents the nonlinear terms. Solving for 2Z, we get [Z =  " − 8Z –  2Z                                                                   (2) 
Since [ is invertible, so its inverse [�, exist and 
therefore, operating [�,on (2), we obtain [�,[Z =  [�," − [�,8Z −  [�,2Z                                      (3) 
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If (3) represents an initial value problem, the [�, will 
denote a definite integral from !/ to t. If   L is a second 
order operator then [�, will represent a two fold 
integration operator and we get,  [�,[Z =  Z − Z�!/� − �! − !/�Z’�!/� 
We use indefinite integrations for boundary value 
problems and the constants are evaluated from the 
given boundary conditions. And thus (3) gives Z =  ^ +  K! + [�," − [�,8Z − [�,2Z                             (4) 
The decomposition method assumes the series solution 
of Z in the form      Z = ∑ Z__̀B/                                                                                    (5)  
where, the first term of the series Z/represents ^ +  K! +[�,". The nonlinear part 2Zwill be decomposed in the 
form 2Z = ∑ ^__̀B/                                           (6) 
where ^_are called the Adomian polynomials generated 
for each nonlinearity so that ^/ depends only on u0 ^, depends only on Z/ and u1, ^H depends on Z/ , Z, , ZH and etc.The Adomian polynomials can be 
obtained from the formula ^_ = ,_! ab

a.b [ℎ�∑ d_Z__̀B/ �efB/ , g = 0,1,2,                         (7) 

Thus, we obtain ^/ = ℎ�Z/� ^, = Z, --! ℎ�Z/� 
^H = ZH --! ℎ�Z/� + 12! Z,H -H-!H ℎ�Z/� 
^i = Zi --! ℎ�Z/� + Z,ZH -H-!H ℎ�Z/� + 13! Z,i -i-!i ℎ�Z/� 
and so on. 
where ℎ is the non linear term in (1). 
Thus, Eqn. (4) can be written as ∑ Z_ = Z/ − [�,8 ∑ Z_ − [�, ∑ ^__̀B/_̀B/_̀B/                       (8) 
Consequently, we can write Z, = −[�,8Z/ − [�,^/ ZH = −[�,8Z, − [�,^,                                                              �9� Z_l, = −[�,8Z_ − [�,^_ 

So, in practice, the g.m  term approximation of the 
solution is given by 

 n_ = ∑ Z?_�,?B/                            (10) 
where Z�o, !� = lim_⟶` n_�o, !� = ∑ Z?�o, !�?̀B/         (11) 
Result: Let 2 be an operator from a Hilbert space H into H and u be the exact solution of (1). ∑ Z__̀B/  which is 
obtained by (9) converges to Z if there exists 0 ≤ 9 < 1 
such that  ‖Z?l,‖ ≤ 9‖Z?‖ where ‖. ‖ is the supremum 
norm. [12]. 
Definition: For every g ∈ 2 ∪ {0},  we define [12] 

                   9_ = z‖Z_l,‖‖Z_‖   ,    ‖Z_‖ ≠ 0
0  ,     ‖Z_‖ = 0 | 

II.  FORMULATION OF THE PROBLEM 

The schematic representation of the flow system is 
shown in the following figure. We have considered a 
uniform cylindrical tube of radius Wwith + −axis as the 
axis of the cylinder. 
We have also considered that the fluid which is allowed 
to pass through it contains dust particles and a uniform 
magnetic field is also applied along the meridian axis. 
The volume fraction of the dust particles L& are also 

taken into consideration. 
On the basis of the above construction, we define a 
model of Newtonian fluid flow with impure elements 
treated as dust particles, through a uniform cylindrical 
tube in the presence of a uniform magnetic field. 

 

Fig. 1. Schematic diagram of the flow system. 

We consider the flow to be taking place in the axial 
direction of the tube and the magnetic field being 
applied perpendicular to the direction of the flow. 

E;1 − L&= }Z∗}!∗ = ;1 − L&= �− })∗}+∗ + dW∗ }}W∗ �W∗ }Z∗}W∗��− PK/HZ∗ − M2/;Z∗ − Z&∗ =                   �12� 
O2/ }Z&∗}!∗ = M2/;Z∗ − Z&∗ =                                                      �13� 
We define the following non-dimensional quantities as 

.W = U∗
U�  , Z = �∗

��  , Z& = ��∗��  , ! = .∗
.�  , ) = &∗.����  , + = V∗

U� 
where W/  is the reference radius, Z�  is the reference 
velocity, !� is the reference time. 
Therefore, from Eqns. (12)  and (13) we get the non-
dimensional set of equations 

R�R. = − R&RV + ,�� �R��RU� + ,U R�RU� − ���,��� Z − ��,��� �Z − Z&�  (14) 

R��R. = ��Z − Z&�                                        (15) 

where  8� = �U��f.� , ��H = ����.�� , � = ���� , � = �.��  . 

In this paper, we will consider time-fractional derivative 
i.e. we will consider the order of partial derivative with 
respect to time to be 0 < 9, * ≤ 1  and also, we 
consider the pressure gradient to be constant 
throughout the flow and so, in general, the time-
fractional derivative form of Eqns. (14) and (15) with 
constant pressure gradient are given by R��R.� = � + ,�� �R��RU� + ,U R�RU� − ���,��� Z − ��,��� �Z − Z&�     (16) 

R���R.� = ��Z − Z&�                                         (17) 

where Zis the fluid velocity vector, Z&is the dust particle 

velocity vector, 8� is the Reynold’s number,��H  is the 
square of Hartmann number (magnetic field parameter), �is the constant pressure gradient, !is the time, W is the 
radius of the tube, L&is the volume fraction of the dust 

particle, � and � are material constant parameters, 9and *are time-fractional order parameters. Now, we will find 
solutions of (16) and (17) with respect to some suitable 
initial conditions which will be divided into two cases. 
Case I. Initial conditions Z�W, 0� = ��1 − WH� = Z&�W, 0� 

where W ∈  [0,1e and  � >  0. 
We try to solve (16) and (17) subject to the initial 

conditions Z�W, 0� = ��1 − WH� = Z&�W, 0� where W ∈ [0,1e. 
Using Riemann-Liouville integral operator on (16) and 
applying Adomian decomposition series solution, we 
obtain an approximate solution as  

Z, = K, !:Γ�9 + 1� + 3, !H:Γ�29 + 1� 
ZH = KH !H:Γ�29 + 1� + 3H !i:Γ�39 + 1� + #H !H:l$Γ�29 + * + 1� 
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Zi = Ki !i:Γ�39 + 1� + 3i ! :Γ�49 + 1� + #i !H:l$Γ�29 + * + 1�
+ Qi !i:lH$Γ�39 + 2* + 1�
+ Yi !i:l$Γ�39 + * + 1� 

and so on. 
And also �/ = 0.494144 < 1 , 9, = 0.107333 < 1 , 9H =0.0545257 < 1and so on. (under some fixed values of 
the parameters). 
According to the above result, we can conclude that our 
series solution obtained by ADM method must be 
convergent. Thus, we get the approximate solution of 
(16) as Z =  Z/ + Z, + ZH + Zi                                                                                  (18) 

Again, we get the following from (17)   

Z&, = K&, !:l$Γ�9 + * + 1� Z&H = K&H .�¤�
¥�:l$l,� + 3&H .��¤�

¥�H:l$l,� + #&H .�¤��
¥�:lH$l,�  

Z&i = K&i .��¤�
¥�H:l$l,� + 3&i .¦�¤�

¥�i:l$l,� + #&i .��¤��
¥�H:lH$l,� +

                Q&i .�¤��
¥�:lH$l,� + Y&i .�¤¦�

¥�:li$l,�  

and so on. 
And also 9/’ =  0.075 <  1, 9,’ =  0.817097 <  1, 9H’ = 0.965916 <  1and so on. (under some fixed values of 
the parameters) 
According to the above result, we can conclude that our 
series solution obtained by ADM method must be 
convergent. Thus, we get the approximate solution of 
(17) as 
 Z& = Z&/ + Z&, + Z&H + Z&i                                        (19) 

Case II. Initial conditions  ©�ª, ��  =  «ª =  ©¬�ª, �� 
where ª ∈ [�, �eand « > 0. 
We try to solve (16) and (17) subject to the initial 

condition Z�W, 0�  =  �W =  Z&�W, 0� where W ∈ [0,1e. 
Using Riemann-Liouville integral operator on (16) and 
applying Adomian decomposition series solution, we 
obtain an approximate solution as  

Z, = ­, !:Γ�9 + 1� + �, !H:Γ�29 + 1� 

ZH = ­H !H:Γ�29 + 1� + �H !i:Γ�39 + 1� + ®H !H:l$Γ�29 + * + 1� 

Zi = ­i !i:Γ�39 + 1� + �i ! :Γ�49 + 1� + ®i !H:l$Γ�29 + * + 1�
+ %i !i:l$Γ�39 + * + 1�
+ Ni !H:lH$Γ�29 + 2* + 1� 

and so on. 
And also 9/ = 0.332178 < 1, 9, = 0.347567 < 1 , 9H = 0.341919 < 1 and so on (under some fixed values 
of the parameters) 
According to the above result, we can conclude that our 
series solution obtained by ADM method must be 
convergent. Thus, we get the approximate solution of 
(16) as Z =  Z/ + Z, + ZH + Zi                                              (20) 
Again, we get from (17) 

Z&, = ­&, !:l$Γ�9 + * + 1� 

Z&H = ­&H !:l$Γ�9 + * + 1� + �&H !H:l$Γ�29 + * + 1�                      
+ ®&H !:lH$Γ�9 + 2* + 1� Z&i = ­&i .��¤�

¥�H:l$l,� + �&i .¦�¤�
¥�i:l$l,� + ®&i .��¤��

¥�H:lH$l,� +
                %&i .�¤��

¥�:lH$l,� + N&i .�¤¦�
¥�:li$l,�  

and so on. 
And also 9/’ = 0 < 1, 9,’ = 0 < 1, 9H’ = 0.30156 <  1 
and  so on.(under some fixed values of the parameters). 
According to the Theorem (1), we can conclude that 
our series solution obtained by ADM method must be 
convergent. Thus, we get the approximate solution of 
(17) as              Z& = Z&/ + Z&, + Z&H + Z&i                                  (21) 

III. RESULTS AND DISCUSSION 

 
Fig. 2. Z vs W (��H varies, L& = 0.03, �= 0.5, �= 0.5, �= 

0.6, �= 0.4, 8� = 0.9, 9= 0.9, *= 0.3, != 0.1) from Eqns. 
(18) and (19). 

 

Fig. 3.  Z& vs W (��H varies, L&= 0.03, �= 0.5, �= 0.5, �= 

0.6, �= 0.4, 8�= 0.9, 9= 0.9, *= 0.3, != 0.1) from Eqns. 
(18) and (19). 

In Fig. 2 and 3, the parametric influence of the magnetic 
field parameter ���H�  placed along the meridian axis 
direction to the flow is initially found to decrease the 
axial fluid velocity profiles upto W = 0.7 and thereafter, a 
minor form of increment of the velocity profile is 
observed to be in increasing trend though the velocity 
attains negative values near to the wall of the tube. On 
the other hand, as the dust particle constituents is 
electrically non conducting as such the negative 
influence of magnetic field on the dust particles is 
absent. This helps the tiny particles move without 
restriction imposed by the magnetic field.  
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So, an increasing trend of the dust particle velocity 
profile are clearly visible. Due to the presence of an 
uniform magnetic field along the meridian axis, a 
resistive force will act along the direction of flow which 
retards the axial fluid flow rate thereby decreasing the 
fluid velocity in the initial stage. 

 

Fig. 4. Z vs W (��H varies, L&= 0.03, �= 0.5, � = 0.5, �= 

0.6, �= 0.4, 8�= 0.9, 9= 1, *= 1, ! = 0.1) from Eqns. (18) 
and (19). 

 

Fig. 5. Z&vs W (��H varies, L&= 0.03, �= 0.5, � = 0.5, � = 

0.6, � = 0.4, 8� = 0.9, 9 = 1, * = 1, ! = 0.1) from Eqns. 
(18) and (19). 

Fig. 4 and 5 shows that the change in magnetic 
field���H� does not show any significant change in the 
dust particle velocity if we take the time fractional order 
parameters α = β = 1 even though decreasing and 
increasing trend is seen for fluid velocity. 

 

Fig. 6. Z vs W (9 varies, L&= 0.03, � = 0.5, �= 0.5, � = 0.6, � = 0.4, 8� = 0.9, ��H = 0.9, *  = 0.5, ! = 0.1) from 
equations (18) and (19). 

 

Fig. 7. Z& vs W (9 varies, L&=0.03, �=0.5, �=0.5, �=0.6, �=0.4, 8�=0.9, ��H=0.9, *=0.5, !=0.1) from Eqns. (18) 
and (19). 

 

Fig. 8. Z vs W (*varies, L&=0.03, �=0.5, �=0.5, �=0.6, �=0.4, 8�=0.9, ��H=0.9, 9=0.5, !=0.1) from Eqns. (18) 
and (19). 

 

Fig. 9. Z& vs W (* varies, L&= 0.03, �  = 0.5, � = 0.5, � = 

0.6, � = 0.4, 8� = 200, ��H = 0.9, 9 = 0.5, ! = 0.1) from 
Eqns. (18) and (19). 

 

Fig. 10. Z vs W (8� varies, L&= 0.03, � = 0.5, � = 0.5, � = 

0.6, � = 0.4, ��  H = 0.9, α = 0.5, β = 0.9, t = 0.1) from 
Eqns. (18) and (19). 
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Fig. 11. Z& vs W (8� varies, L&=0.03, �=0.5, �=0.5, �=0.6, �=0.4, ��H=0.9, α = 0.5, β = 0.9, t = 0.1) 
from Eqns. (18) and (19). 

In Fig. 6 and 7, the physical influence of the fractional 
order of the time derivative for the fluid flow over axial 
fluid velocity and dust particle velocity have been 
demonstrated graphically. 

It is observed that due to the increase in values of 9, the 
axial fluid flow rate de-accelerates whereas the dust 
particle flow rate accelerates within the flow region 
which is in complete agreement with Shah et al., 
[21] for our fluid velocity for time ! < 1. In Fig. 8 and 
9, the effects of time fractional order derivative for dust 
particle *  on the axial fluid velocity as well as dust 
particle velocity has been highlightedwhich is also in 
complete agreement with Shah et al., [21] for our 
dust particle velocity for time ! < 1 . An opposite 
phenomenon is detected in this case in comparison to 
the effects shown by 9.In Fig. 10 and 11, the effects of 
Reynold’s number on the axial fluid velocity and dust 
particle velocity is presented graphically. We observed 
that the axial fluid velocity as well as dust particle 
velocity tend to increase with the increase in Reynold’s 
number. Due to increase in Reynold’s number, the 
inertial forces suppress the internal friction of the flow, 
as a result, rate of flow of axial velocity as well as dust 
particle velocity accelerate. This is why the velocities are 
found to be in increasing trend. 

Table 1: Effects of parameters on skin friction (¯ª) and volumetric flux(°) from Eqns. (18) and (19). 

±«² ³ ´ µ � ¶ � ·¬ ¯ª = − �¸©¸ª�ªB� 
° 

 

0.1 0.5 0.6 0.5 0.1 0.4 0.5 0.03 0.767321 0.31963¹ 
0.5 0.5 0.6 0.5 0.1 0.4 0.5 0.03 0.653496 0.27736¹ 
0.9 0.5 0.6 0.5 0.1 0.4 0.5 0.03 0.552238 0.23019¹ 
1 0.6 0.6 0.5 0.1 0.4 0.5 0.03 0.525983 0.21143¹ 
1 0.7 0.6 0.5 0.1 0.4 0.5 0.03 0.524976 0.20594¹ 
1 0.8 0.6 0.5 0.1 0.4 0.5 0.03 0.523608 0.20014¹ 
1 0.5 0.7 0.5 0.1 0.4 0.5 0.03 0.524837 0.21162¹ 
1 0.5 0.8 0.5 0.1 0.4 0.5 0.03 0.52243 0.20613¹ 
1 0.5 0.9 0.5 0.1 0.4 0.5 0.03 0.519406 0.200104¹ 
1 0.5 0.6 2 0.1 0.4 0.5 0.03 0.526628 0.63916¹ 
1 0.5 0.6 3 0.1 0.4 0.5 0.03 0.526628 0.92085¹ 
1 0.5 0.6 4 0.1 0.4 0.5 0.03 0.526628 1.20255¹ 
1 0.5 0.6 2 0.2 0.4 0.5 0.03 0.428111 0.61285 ¹ 
1 0.5 0.6 2 0.3 0.4 0.5 0.03 0.334236 0.49363¹ 
1 0.5 0.6 2 0.4 0.4 0.5 0.03 0.238271 0.30821¹ 
1 0.5 0.6 2 0.5 0.5 0.5 0.03 0.259924 0.46524¹ 
1 0.5 0.6 2 0.5 0.6 0.5 0.03 0.343448 0.68159¹ 
1 0.5 0.6 2 0.5 0.7 0.5 0.03 0.398774 0.78438¹ 
1 0.5 0.6 2 0.5 0.4 0.6 0.03 0.145246 0.09276¹ 
1 0.5 0.6 2 0.5 0.4 0.7 0.03 0.151229 0.11341¹ 
1 0.5 0.6 2 0.5 0.4 0.8 0.03 0.156619 0.13021¹ 
1 0.5 0.6 2 0.5 0.4 0.5 0.06 0.0990837 −0.16767¹ 
1 0.5 0.6 2 0.5 0.4 0.5 0.07 0.0847656 −0.18312¹ 
1 0.5 0.6 2 0.5 0.4 0.5 0.08 0.0698304 −0.19921¹ 

In the table, the parametric influences of some physical 
parameters like pressure gradient, magnetic field 
parameters (square of the Hartman number ��H ), 
material constant parameter for particle concentration �and particle mass �, the time fractional parameters for 
fluid and dust particles (9a nd * respectively) along with 
particle volume fraction L&on the surface skin friction 

and volumetric flux are depicted taking � = 0.4 and 8� =9 throughout the table. It is clearly observed from the 
table that due to increase in parametric values of   9 
and  * , the skin friction is in increasing trend but the 
increment of ��H reduces the skin friction. The volumetric 
flux is in decreasing pattern as ��H  increases which is 
obvious as the rise in magnetic field produces a 
resistive force in the form of Lorentz force against the 
fluid flow. Also, increment in 9 and * gives increment to 
volumetric flux, which clearly shows that fractional order 9and* play important role in the fluid flow. Again, due to 
an increment in particle volume fractionL&, the axial fluid 

flow rate is disrupted due to maximum surface area 
covered by the dust particles, as a result, less amount of 
fluid per unit area per unit time will get discharged which 
results in decreasing the volumetric flux rate of flow. 
Hence, due to less volumetric rate of flow, the effect of 
surface friction by the discharged fluid particle will be 
less at the wall resulting in decreasing skin friction. It is 
interesting to observe that the fluctuation in value of � 
(negative pressure gradient) has no impact on the 
surface friction though the increment in value of � (negative pressure gradient) which is nothing but 
decrease in pressure implies that the increment in 
volumetric flow rate which is also obvious. With increase 
in time ! the volumetric flux decreases which is obvious 
as the axial fluid flow decreases with time. With 
increment in particle concentration �and particle mass �, the volumetric flux decreases which is also practically 
true as the concentration and mass act as a resistance 
to the axial fluid flow. 
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IV. CONCLUSION 

A time-fractional incompressible Newtonian viscous fluid  
through a circular tube with dust particle immersion, 
under an influence of a uniform magnetic field along 
meridian axis is considered. The Adomian 
decomposition method (ADM) is used to find an 
approximate solution to our proposed time fractional 
order differential equation. It is observed that the 
presence of magnetic field parameter (��H ) and time-
fractional parameter (9) reduces the velocity flow rate of 
fluid but boost up the dust particle flow rate. An exactly 
opposite phenomenon is observed for time-fractional 
parameter (*). The fluid velocity as well as dust particle 
velocity are found to increase due to increase in values 
of Reynold’s number (8�). Due to increase in values of 
material constant parameters �  and � , the volumetric 
flux decreases. Again, due to increase in adverse 
pressure gradient (�), volumetric flux increases. Thus, 
we have observed the way magnetic field affects a dusty 
fluid flow phenomenon. It means, the more the intensity 
of magnetic field, the slower will be the fluid flow and 
vice versa. Most importantly, it is observed that the 
change in dust particle velocities due to magnetic field 
occur only when we take non integer values of time 
fractional orders 9and *. But if we take 9 = * = 1 then 
no change is observed in the dust particle velocity due 
to magnetic field. Thus, we can conclude that the time 
fractional orders also play a very important role in the 
fractional order fluid flow. 
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APPENDIX 

• K, = −  ��� − ��,�U�����,���  

• 3, = − ½,��� ���H + ��� 

• KH =  �������,���� − ����l����¾,���  

• 3H = − ¿¾,��� ���H + ��� 

• #H = ����¾,���  

• Ki = −  ��������l�����;,���=� − ����l�����,���  

• 3i = − ¿�,��� ���H + ��� 

• #i = �����,���  

• Ei = ��Á��,���  

• Yi = − Á�����l���,��� + ��¿��,���  

• K&, = �� 

• K&H = K,� 

• 3&H = 3,� 

• #&H = −K&,� 

• K&i = KH� 

• 3&i = 3H� 

• #&i = �#H − 3&H�� 

• Q&i = −K&H� 

• Y&i = −#&H� 

• ­, = ���×U − ����U,��� 

• �, = − ���½,��� − ��½,��� 

• ­H = H����U¦ + Â ,��×U �− ���×U� − ����,����Ã − ���Ä¾,��� −
      ��Ä¾,��� 

• �H = − ����¾,��� − ���¾,��� 

• ®H = ��Ä�¾,���  

• ­i = ,�� Å ,H����UÆ − H����;,���=U¦ − ����l���H��� ;,���=U¦ − i����UÆ +
������;,���=U¦ − ���l��,��� �− ���×U¦ − ����;,���=U�Ç − ���Ä�,��� −

��Ä�,��� 

• �i = − �����,��� − ����,��� 

• ®i = ��Ä��,���  

• %i = − ���È�,��� − ���È������,���  

• Ni = ��È��,��� 

• ­&, = �� 

• ­&H = �­, 

• �&H = ��, 

• ®&H = −­&, 

• ­&i = �­H 

• �&i = ��H 

• ®&i = � �®H − �&H� 

• %&i = −�­&H 

• N&i = −�®&H 
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